Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtre
Ajouter des filtres

Sujet Principal
Année
Type de document
Gamme d'année
1.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.09.12.21263453

Résumé

Summary The Amazonas was one of the most heavily affected Brazilian states by the COVID-19 epidemic. Despite a large number of infected people, particularly during the second wave associated with the spread of the Variant of Concern (VOC) Gamma (lineage P.1), SARS-CoV-2 continues to circulate in the Amazonas. To understand how SARS-CoV-2 persisted in a human population with a high immunity barrier, we generated 1,188 SARS-CoV-2 whole-genome sequences from individuals diagnosed in the Amazonas state from 1st January to 6th July 2021, of which 38 were vaccine breakthrough infections. Our study reveals a sharp increase in the relative prevalence of Gamma plus (P.1+) variants, designated as Pango Lineages P.1.3 to P.1.6, harboring two types of additional Spike changes: deletions in the N-terminal (NTD) domain (particularly Δ 144 or Δ 141-144) associated with resistance to anti-NTD neutralizing antibodies or mutations at the S1/S2 junction (N679K or P681H) that probably enhance the binding affinity to the furin cleavage site, as suggested by our molecular dynamics simulations. As lineages P.1.4 (S:N679K) and P.1.6 (S:P681H) expanded (Re > 1) from March to July 2021, the lineage P.1 declined (Re < 1) and the median Ct value of SARS-CoV-2 positive cases in Amazonas significantly decreases. Still, we found no overrepresentation of P.1+ variants among breakthrough cases of fully vaccinated patients (71%) in comparison to unvaccinated individuals (93%). This evidence supports that the ongoing endemic transmission of SARS-CoV-2 in the Amazonas is driven by the spread of new local Gamma/P.1 sub-lineages that are more transmissible, although not more efficient to evade vaccine-elicited immunity than the parental VOC. Finally, as SARS-CoV-2 continues to spread in human populations with a declining density of susceptible hosts, the risk of selecting new variants with higher infectivity are expected to increase.


Sujets)
COVID-19
2.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-580195.v1

Résumé

One of the most remarkable features of the SARS-CoV-2 Variants of Concern (VOC) is the unusually large number of mutations they carry. However, the specific factors that drove the emergence of such variants since the second half of 2020 are not fully resolved. In this study, we described a new SARS-CoV-2 lineage provisionally designated as P.1-like-II that, as well as the previously described lineage P.1-like-I, shares several lineage-defining mutations with the VOC P.1 circulating in Brazil. Reconstructions of P.1 ancestor sequences demonstrate that the entire constellation of mutations that define the VOC P.1 did not accumulate within a single long-term infected individual, but was acquired by sequential addition during interhost transmissions. Our evolutionary analyses further estimate that P.1-ancestors strains carrying half of the P.1-lineage-defining mutations, including those at the receptor-binding domain of the Spike protein, circulated cryptically in the Amazonas state since August 2020. This evolutionary pattern is consistent with the hypothesis that partial human population immunity acquired from natural SARS-CoV-2 infections during the first half of 2020 might have been the major driving force behind natural selection that allowed VOCs' emergence and worldwide spread. These findings also support a long lag-time between the emergence of variants with key mutations of concern and expansion of the VOC P.1 in Brazil.


Sujets)
COVID-19
3.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.03.19.21253946

Résumé

Mutations at both the receptor-binding domain (RBD) and the amino (N)-terminal domain (NTD) of the SARS-CoV-2 Spike (S) glycoprotein can alter its antigenicity and promote immune escape. We identified that SARS-CoV-2 lineages circulating in Brazil with mutations of concern in the RBD independently acquired convergent deletions and insertions in the NTD of the S protein, which altered the NTD antigenic-supersite and other predicted epitopes at this region. These findings support that the ongoing widespread transmission of SARS-CoV-2 in Brazil is generating new viral lineages that might be more resistant to neutralization than parental variants of concern.

4.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.03.12.434969

Résumé

The SARS-CoV-2 epidemic in Brazil was dominated by two lineages designated as B.1.1.28 and B.1.1.33. Two SARS-CoV-2 variants harboring mutations at the receptor-binding domain of the Spike (S) protein, designated as lineages P.1 and P.2, evolved within lineage B.1.1.28 and are rapidly spreading in Brazil. Lineage P.1 is considered a Variant of Concern (VOC) because of the presence of multiple mutations in the S protein (including K417T, E484K, N501Y), while lineage P.2 only harbors mutation S:E484K and is considered a Variant of Interest (VOI). Here we report the identification of a new SARS-CoV-2 VOI within lineage B.1.1.33 that also harbors mutation S:E484K and was detected in Brazil between November 2020 and February 2021. This VOI displayed four non-synonymous lineage-defining mutations (NSP3:A1711V, NSP6:F36L, S:E484K, and NS7b:E33A) and was designated as lineage N.9. The VOI N.9 probably emerged in August 2020 and has spread across different Brazilian states from the Southeast, South, North and Northeast regions.

5.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-318392.v1

Résumé

The SARS-CoV-2 lineage B.1.1.28 has been evolving in Brazil since February 2020 giving origin to multiple local clades including the new Variant of Concern (VOC) designated P.1 or 501Y.V3. The recent emergence of sub-lineages with convergent mutations in the spike (S) protein raises concern about the potential impact on viral infectivity and immune escape. We describe here the first three confirmed SARS-CoV-2 reinfections cases with the new VOC P.1 in residents of the Amazonas state, Brazil. Three female patients, 29, 40, and 50-year-old, were RT-PCR confirmed for SARS-CoV-2 on two occasions, with at least 92 days apart. Next-generation sequencing and phylogenetic analysis were conducted to precisely access the SARS-CoV-2 lineages of each infection event. SARS-CoV-2 genomic analysis confirmed three cases of reinfections caused by the VOC P.1 in patients that were primo-infected by distinct viral lineages 3–9 months earlier. Case 1 (29-year-old) was positive on March 24, 2020 (lineage B.1.195) and then on December 30, 2020 (lineage P.1); case 2 (50-year-old) was positive on October 19, 2020 (lineage B.1.1.33) and on January 19, 2021 (lineage P.1); case 3 (40-year-old) was positive on April 22, 2020 (lineage B.1.195) and on January 29, 2021 (lineage P.1). The three patients displayed low mean Ct values (< 22) at nasopharyngeal samples and reported less severe illness during reinfection. The present study provides the first evidence of the new VOC P.1 causing multiple reinfections during the second epidemic peak in the Amazonas state. Our findings suggest that reinfected individuals may have been infectious. Although immune responses induced by natural infections do not necessarily prevent subsequent infections by the VOC P.1, they may still protect from severe disease.

6.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-275494.v1

Résumé

The Northern Brazilian state of Amazonas is one of the most heavily affected country regions by the COVID-19 epidemic and experienced two exponential growing waves in early and late 2020. Through a genomic epidemiology study based on 250 SARS-CoV-2 genomes from different Amazonas municipalities sampled between March 2020 and January 2021 we revealed that the first exponential growth phase was driven mostly by the dissemination of lineage B.1.195 which was gradually replaced by lineage B.1.1.28. The second wave coincides with the emergence of the variant of concern (VOC) P.1 which evolved from a local B.1.1.28 clade in late November and rapidly replaced the parental lineage in less than two months. Our findings support that successive lineage replacements in Amazonas were driven by a complex combination of variable levels of social distancing measures and the emergence of a more transmissible VOC P.1 virus. These data provide unique insights to understanding the mechanisms that underlie the COVID-19 epidemic waves and the risk of disseminating SARS-CoV-2 VOC P.1 in Brazil and potentially worldwide.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche